
1Learn from the Best: iLogic | ASTI.COM

Learn from the Best:

iLogic

Written by Carol Dunn & Jason Miles ASTI.com

1Learn from the Best: iLogic | ASTI.COM

Table of Contents
INTRODUCTION .. 2

CHAPTER 1 | BASICS ... 3

What iLogic Is Used For ... 3

Components and Management Behavior .. 3

Document Units Geometry...3

Assembly Add Constraints Functions...4

Capture Current State Commands...4

Help for Functions...5

Glossary of iLogic Terms .. 6

CHAPTER 2 | CONFIGURATION.. 9

CHAPTER 3 | RULES .. 10

Internal Rules ... 10

External Rules .. 10

CHAPTER 4 | PARAMETERS ... 11

Inventor Parameters .. 11

CHAPTER 5 | VARIABLES ... 13

Declaring13

Typecasting .. 13

Shared ... 13

CHAPTER 6 | DEFINING THE DECISION-MAKING PATH ... 14

Conditional Expressions ... 14

Loops ... 14

CHAPTER 7 | USE CASE: DESIGN COPY .. 15

SUMMARY.. 20

ABOUT THE AUTHORS .. 21

2Learn from the Best: iLogic | ASTI.COM

INTRODUCTION
If your product design process would benefit from automating repetitive tasks, iLogic should be in your future.
Included with Autodesk Inventor, iLogic adds another level of intelligence in your design work. It provides a
simple way to capture and reuse your work with rules-driven design. With iLogic, you can standardize and
automate design processes when configuring your virtual products, saving time and boosting productivity.

Inventor is a 3D parametric design application. Using iLogic, you can embed rules as objects directly into
part, assembly and drawing documents. The rules determine and drive parameter and attribute values for
your design. With this kind of rules-driven design, you can define the behavior of attributes, features and
components of a model. Knowledge is saved and stored directly in the documents the same way geometric
design elements are stored. iLogic rules can make use of custom parameter types available in Inventor, like
text, true/false and multi-value lists. These parameter types allow rules that involve more than numeric input
values.

https://www.asti.com/product/inventor/
https://knowledge.autodesk.com/support/inventor-products/learn-explore/caas/CloudHelp/cloudhelp/2018/ENU/Inventor-Help/files/GUID-AB9EE660-299E-408F-BBE1-AFE44C723F59-htm.html
https://www.asti.com/product/inventor/

3Learn from the Best: iLogic | ASTI.COM

CHAPTER 1 | BASICS
What iLogic Is Used For

If you’ve used desktop software applications, you’ve taken advantage of automation. For instance, many of
us have used macros in Excel to automate tasks. The automation employed by Autodesk Inventor is similar to
that. It uses a series of tools to automatically accomplish a task, process, or function, and iLogic is one of those
tools.

iLogic enables users to create logic in the form of Visual Basic VB.net to accomplish tasks. Rules are developed
and organized using snippets (small regions of re-usable source code) and other code writing statements.
They are set to run at specific intervals to dependably perform some of the tasks that engineers and designers
would otherwise need to perform.

Examples of iLogic performance rules include: changing text throughout a model, updating a model’s
properties and replacing components of an assembly.

In fabrication and manufacturing, there are patterns in production repeatable processes. The simple task is to
find the processes that iLogic can help with.

If you have a specific format for an iProperty description in your model that is predictable and standardized,
then you can develop logic to collect information from the model, transform the information and overwrite the
iProperties with the correct, newly formatted information. It is always correct and consistent.

iLogic can also benefit you in automating drawing generation, dimensioning, adding comments, and updating
materials lists.

Components and Management Behavior

iLogic assembly functions make it easier for you to write rule code to add, modify and delete components and
constraints:

Components.Add: Ensures the component exists and that it has specified properties.

Components.AddiPart: Creates or updates an occurrence using an iPart factory and specification of a member.

ThisAssembly.BeginManage and ThisAssembly.EndManage: Both allow you to delete components without
specifically calling Components.Delete. If you have set the parameter for a component in the assembly to True
or False, then it will be added or updated if True and deleted or not updated if False. iLogic ensures that a
component is present only if it is labeled as True. Every time a BeginManage/EndManage block runs, you must
call a function to add only the components you want included in that block.

Document Units Geometry

There are iLogic functions which use document-units instead of database-units for the coordinate values and
objects representing points, vectors, and matrices. These objects can be used to specify the location and
orientation of components created by Components.Add and related functions. Use ThisDoc.Geometry.Point()
or similar functions to create the objects.

https://autode.sk/2xUtQAB

4Learn from the Best: iLogic | ASTI.COM

Assembly Add Constraints Functions

The iLogic Relationships (Add) functions allow you to create an iLogic assembly with occurrences and
constraints generated by a rule. The rule will regenerate or update the content if any of the relevant parameter
values are changed.

Capture Current State Commands

The Capture Current State command has been enhanced to support:

Capture Current State (Components.Add): Captures the state of the selected components using Components.
Add. Ignores related constraints.

Capture Current State (Components Constraints.Add): Captures the state of the selected components and
related constraints using Components.Add.

Capture Current State (Constraints.Add): Captures the state of the selected constraints using Constraints.Add.
Only available if the file contains a constraint.

Capture Current State (Patterns.Add): Captures the state of the selected pattern. Available if the file contains
an assembly pattern.

Multi-select components in the Model tree in the Rule Editor to capture the state of multiple components all
at once. If you are capturing constraints between components, this ensures they are only captured once.

5Learn from the Best: iLogic | ASTI.COM

Assign Name Will Identify Geometry for Constraints

You can assign names to faces and edges and then create a rule that adds the constraint(s) directly to the face
or edge with the assigned name. There is no associativity between the assigned name and the Rule Editor. If
you change an assigned name in a part file, you will need to recreate the rule or manually change the assigned
name in the rule editor.

Help for Functions

Help for iLogic functions and arguments are available from the iLogic API Reference help node. In the
reference, you can also find information on the functions supported in iLogic. For help with commands and
rules see To Work with Rules in iLogic.

Note: iLogic can change your components-documents-assembly workflow dramatically. If it’s time to try iLogic,
contact the experts of Applied Software today for more information.

https://help.autodesk.com/view/INVNTOR/2019/ENU/?guid=__iLogic_API_html_bae24621_fce4_2405_ce46_7bf09ace6245_htm
https://help.autodesk.com/view/INVNTOR/2019/ENU/?guid=__files_GUID_C5ADE109_10E9_41A0_BC4A_BE73AA68A1C7_htm
https://www.asti.com/about/

6Learn from the Best: iLogic | ASTI.COM

Glossary of iLogic Terms

Each of the following iLogic rule functions is accessed by expanding the appropriate node under the System tab in
the Snippets area of Inventor.

Advanced Drawing API

If you want two applications to communicate with each other, you can use Application Programming Interface
rules to achieve that, including the drawing document, the underlying sheet, the underlying view object, or the
document for the current view.

Advanced API

Go a step beyond the drawing API to the current Inventor session, document where the rule is stored, part or
assembly document, automation, component, or feature.

Assembly Constraint

Define optional configurations for a component in an assembly by constraining or unconstraining the positions of
the component.

7Learn from the Best: iLogic | ASTI.COM

BOM

Change the bill of materials, override calculated quantities or export BOM data to Excel.

Component

Replace one component with another to change configuration of parts or assemblies.

Document

Access the underlying document or file name for an Inventor part or assembly.

Drawing

Update a model efficiently by customizing the way changes are depicted in the drawing sheets.

Excel Data Links

Read and write to Excel spreadsheets, either from tables or specific cells. Also export bills of materials to Excel.

Feature

Set or read colors, suppression states, and thread and tapped holes properties.

iPart and iAssembly

Change the configuration of an assembly. Custom parameters can be used to drive part configuration.

iFeature

Change the active row of a table-driven iFeature where each row contains different parameters to drive the feature.

Math

Add your choice of 13 standard math functions to your function rules, 5 trigonometry functions, 6 comparison
functions, 9 others, plus custom iLogic math functions.

Measure

Find and list values for area, perimeter, distance, extents and angles.

Message Box

Create message and data input boxes.

Parameter

Change parameter values of components directly.

Run Other

Run a rule that is set to not run automatically or one that does not have trigger parameters.

8Learn from the Best: iLogic | ASTI.COM

Sheet Metal

Read or set the current sheet metal rule in a sheet metal part, and change the rule automatically depending on type
or thickness of material.

Standard and String

There are 7 standard string functions for text in your rules, plus 5 specialized string functions.

Variables

Pass data between rules with shared variable or new array functions, which are stored in memory and are not
associated with any part or assembly.

Work Feature

Redefine a sketch, or redefine the workplane by adjusting/flipping the normal vector.

9Learn from the Best: iLogic | ASTI.COM

CHAPTER 2 | CONFIGURATION
iLogic is included in Inventor, so you will need to change some Inventor settings first before getting the
maximum use from iLogic.

The iLogic Configuration button specifies where Inventor will find external rule directories and their priority order
of use. One example is the directory location for dynamic link libraries (DLLs), which originate from Microsoft Visual
Studio and trigger iLogic logic and rules.
Users can set file extensions for saving external rules and the default logging level where debugging information will
be produced. There are also some security options settings to protect computer systems from potentially hazardous
code running within Inventor.
After you set these options, you can begin using the features of iLogic.

10Learn from the Best: iLogic | ASTI.COM

CHAPTER 3 | RULES
There are internal and external iLogic rules. They are both created within Inventor in the iLogic browser, and
they are both visible within the iLogic browser. Either type of rule can be controlled, suppressed, triggered, and
deleted from the list.

Internal Rules

Internal rules are created and stored within the context of a file. Part, assembly and drawing files all have the
capability to store, compile and run rules to affect each file differently.

External Rules

External rules are similar to internal, but they are stored in a directory outside the files – on a server or one
user’s local system – to make them less accessible to users and less prone to being accidentally altered.
Because external rules have a higher level of security, they are preferred in cases where permissions are
required to edit rules, such an enterprise setup.

11Learn from the Best: iLogic | ASTI.COM

CHAPTER 4 | PARAMETERS
Parameters are named value placeholders of a specific type. Inventor parameters are mostly numeric and
associated to dimensions that control geometry. When parameter values change, the dimensions associated to
those parameters also change, graphically updating the models.

Inventor Parameters Include:

Model

These are parameters created by normal Inventor behavior. In the Parameters dialog box, they are
automatically named as d0, d1, d2. Model parameters are created and deleted as necessary by the Inventor
system. It is preferred that users don’t rename model parameters.

User

Parameters created by users can range from text/string, Boolean, numeric, and true/false. They are useful
because, while they are used by different features and iLogic code, they are not created or deleted by the
Inventor system. It is standard operating procedure to create unique names for user parameters.

Reference

These parameters are created when Inventor defines a “driven dimension,” which forces the sketch outside its
constraints. The parameter can be named to help with the iLogic code, but the value cannot be changed.

Linked

When parameters are connected to Inventor from an application like Excel, they are referred to as linked.
When a user updates the names and values in the Excel spreadsheet, the changes reflect in Inventor and
control features, dimensions and assemblies.

12Learn from the Best: iLogic | ASTI.COM

iProperties

Inventor also uses metadata to further define your files. These iProperties include things like file name, file
size, file path, author, date modified, part number, description, cost, stock number, and others. They are useful
when you want to amass data about your files. iProperties are read-enabled, and most are also write-enabled.

13Learn from the Best: iLogic | ASTI.COM

CHAPTER 5 | VARIABLES
There are some protocols that all programmers understand. Even though iLogic is simple code, and you don’t
have to have programming experience to use it, an awareness of code writing best practices will help you get
productive faster. Declaring variables and typecasting are examples of those practices, and they will give you a
standard for writing logic.

Declaring

Declaring variables in iLogic is as simple as writing a name and giving it a value:

CylinderHeight = 50

Once you create a variable you can manipulate it. The value can be read and processed in a calculation, or you
can write to it in order to update something else. Although simply pairing the name and value is acceptable
in iLogic, you can leverage a code writing best practice and set the name, give it a “type,” and then provide a
value:

CylinderHeight As Double = 50

This is referred to as typecasting.

Typecasting

This tells iLogic to create a variable that will only hold a “double” value and then provide the value. Typecasting
ensures that only a specific value can be provided to the variable. Values other than height, for instance, will
cause the code to fail. This method is useful for constructing logic needed for calculations, manipulating other
parameters and passing values to other constructs.

Specifying a type allows you to use more complicated code in your rules and visualize the flow of information
at the same time. It also allows you an easy method to debug your code.

Shared

Shared variables are another feature of iLogic. When declaring variables in an iLogic rule, that variable is only
accessible within the context of that rule. If you need to create a variable and set its value to use in numerous
rules, then shared variables are used.

In the iLogic Snippets panel of the iLogic rule editor, the Shared Variable functions are under the Variables
index.

To use shared variables, use a similar process to declaring other variables:

First declare the shared variable, then provide a name and value for it. The value can be a static value, or it can
be the value of some other parameter, property or variable.

Once a Shared Variable has been declared and a value provided, then it can be consumed and updated as
necessary.

Use the other Shared Variable functions to see if a shared variable exists or to remove any and all shared
variables from memory.

14Learn from the Best: iLogic | ASTI.COM

DEFINING THE
DECISION-MAKING PATH

When looking at iLogic rules, you will need to define the decision-making path by taking into account the
different conditions that might exist within a model. Using expressions that define different conditions is a way
to accomplish this.

Conditional Expressions

The most common conditional expression is the “If Then” expression:

If someValue = True Then
‘Do Something
Else
‘Do Something Else
End If

When using code, you look to see if a condition exists, and if it does, then the code will do something. If the
condition does not exist or if a different condition exists, then the code will do something else.

In its simplest form, this is easy to follow, but once you add in several conditions and more operators to explore
numerous conditions, it can get confusing. At that point, there are better ways to handle the code.

Loops

An essential method for writing code is the concept of loops. For example, when you are doing iterations
of an assembly to get the names of components, loops allow you to go through all the occurrences without
having to know how many exist. While constructing code and developing logic involve understanding patterns,
consistency and predictability, loops accommodate the unpredictable.

CHAPTER 6 |

15Learn from the Best: iLogic | ASTI.COM

CHAPTER 7 | USE CASE: DESIGN COPY
Using iLogic Design Copy is a great way to copy an assembly that is set up to drive parts from an assembly by
using iLogic code. This process is fairly simple.

Make sure no files are open in Inventor. The command will not exist in the TOOLS tab if you have any file open.

Once the Dialog Box is open, you can select the assembly you wish to copy. All of the children of the assembly
will be automatically selected.

If you need this assembly design copied to a new project, you can enter that information in this dialog box.
It will automatically create the project name based on the location you store it in. You can BROWSE or type

16Learn from the Best: iLogic | ASTI.COM

in a path. You’ll notice that you can change the filenames of the parts with either a prefix or suffix. Keep in
mind that you will need to update any code that specifically calls out a filename such as Parameter(“Ladder
Skeleton:1”, “Ladder_Height”) = Ladder_Height . You can also force the update of the part number.

Once you START the design copy, you will see a progress window. You can uncheck the dialog that allows you to
open Windows Explorer to the new location.

17Learn from the Best: iLogic | ASTI.COM

The command is complete. Now you can go open the new project that was created and open the new iLogic
Design Copied Assembly.

18Learn from the Best: iLogic | ASTI.COM

You may have to set/create a LevelOfDetail to see changes made if you are using any Frame Generator parts in
the assembly. Hopefully you have created a nice iLogic Form that lets you modify the parameters that need to
change.

19Learn from the Best: iLogic | ASTI.COM

20Learn from the Best: iLogic | ASTI.COM

SUMMARY
The Autodesk Inventor tool iLogic adds a higher level of intelligence to your designs. Its rules-driven
process allows you to capture and reuse your design work on virtual products. You’ll save time and increase
productivity by standardizing and automating your design processes, especially repetitive tasks.

The iLogic rules determine and drive parameter and attribute values for your designs, so you can define the
behavior of a model’s attributes, features and components. Knowledge is saved and stored directly in your
documents, and it’s parametric. Rules can be embedded as objects directly into part, assembly and drawing
documents and make use of custom parameter types in Inventor. The result is the ability to use input values
that are more than just numerical.

21Learn from the Best: iLogic | ASTI.COM

ABOUT THE AUTHORS
Jason Miles

With a background in industrial drafting, design, engineering, computer information systems, and marketing,
Jason Miles serves as a senior specialist to Applied Software customers in the manufacturing industry.

Jason is an Autodesk Certified Instructor and Autodesk Inventor Certified Professional, with an additional
specialized certification in Product Design and Manufacturing.

Carol Dunn

Carol is a professional writer. She joined the Applied Software marketing team in 2018 after 26 years with the
top-ranked Autodesk Authorized Training Center in North America – what is now the Denver-metro-based Applied
Software office. She began working in the CAD industry in 1992, when AutoCAD was one of only a few products
Autodesk marketed. She has held most of the positions a small business offers, including GM, sales, accounting,
tech support, customer service, and sometimes the janitor.

22Learn from the Best: iLogic | ASTI.COM

Learn from the Best:

iLogic

Written by Carol Dunn & Jason Miles ASTI.com

